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AUTOMATED SEGMENTATION TUNER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. 119(e)
from U.S. Provisional Application Ser. No. 61/356,159
entitled “Automated Segmentation Tuner” filed on Jun. 18,
2010, which is expressly incorporated by reference in its
entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This application relates in general to image processing and
in particular to identifying regions of black text, image, and
white space in input images.

2. Discussion of Related Art

Embodiments of the present invention provide a solution
for improving image segmentation, which is the process of
categorizing the pixels of an input document as white space,
black text, and image content. Segmentation can improve
document image processing in several ways, essentially
because the choice of appropriate image processing algo-
rithm for a particular image region depends on the region’s
contents. Application of particular algorithms to document
image regions containing the wrong content type can actually
decrease document image quality.

When performing color copying for example, one can get
much higher quality results if one can determine what parts of
the original document are white space, black text or black line
art, and image content. Text looks better when printed only in
black ink or black toner, as there are no colored halos around
the edges. In contrast, printed photographs generally look
better when all available inks or toner colors are used. There
are also performance advantages to printing according to
particular algorithms, i.e. if a page or part of a page is black
text only, it can often be printed faster. Scanned input may
also be compressed more effectively if regions of black text
and white space have already been recognized. This applica-
tion is written in terms of a copy system, though the present
invention is not limited to that use.

Segmentation is unfortunately not an easy task. The input
document image arriving for processing from the scanner is
typically noisy. Scanned text often has color fringes or halos,
and may not be very dark. Text also comes in many different
fonts and sizes. White areas may have nonwhite speckles
from a variety of causes. Images may be screened halftones,
photographs, or colored artwork for example, and may need
to be further processed accordingly.

At present, typical segmentation tools break the input
document image into rectangular blocks, and calculate vari-
ous parameters for each block. The parameters might include
smoothness, color level, average luminance, minimum lumi-
nance, and maximum luminance. Some of these parameters
may be averaged vertically or in a neighborhood of the block.
These aggregated values are additional parameters for the
block.

Then a classification by parameter values takes place,
which often involves comparing parameter values to thresh-
olds and doing lots of ANDs and ORs to try to assemble a
logic function to refine the classification. A secondary algo-
rithm run over the initial classification converts islands of text
in an image to image content, and vice versa, and performs
similar cleanups. Tuning the thresholds is a time consuming
and frustrating job. A set of threshold values is typically
chosen by educated guess.
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A set of original documents is then run through a segmen-
tation algorithm. A person, the tuner, examines the results of
the segmentation algorithm carefully to see where mistakes
were made. The tuner then manually determines what thresh-
old values or what logical combination caused the error, a
difficult task in itself, and adjusts the threshold or fixes the
logic. The tuner then repeats the process. An adjustment that
fixes one problem will often create others, unfortunately. The
tuner must try to find threshold values and logic that minimize
errors over a wide range of documents.

Previous manual and partially-automated segmentation
techniques are tedious, time-consuming, and/or inaccurate.
There is therefore a need for improved automated document
segmentation.

SUMMARY OF THE INVENTION

Disclosed and claimed herein are a device, method, and
computer program product for identifying regions of black
text, image content, and white space in input document
images.

A setof'scanned training documents representing the range
of text and images to be processed is coarsely tagged to
classify regions by content type. The training images are
divided into bricks, parameters describing individual brick
features are evaluated, and the bricks are classified according
to the parameter values. A classification map that relates
parameter values to classification codes describing content
type is constructed by generating linear equations separating
a parameter space into parameter regions along classification
boundaries. After training, input documents are scanned and
divided into bricks, and brick parameters are converted into
an index into the classification map, to classify document
regions by content.

Other aspects, features, and techniques of the invention
will be apparent to one skilled in the relevant art in view of the
following detailed description of the invention embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of the present inven-
tion will become more apparent from the detailed description
set forth below when taken in conjunction with the drawings
in which like reference characters identify correspondingly
throughout. The accompanying drawings are not intended to
be drawn to scale. In the drawings, each identical or nearly
identical component that is illustrated in various figures is
represented by a like numeral. For purposes of clarity, not
every component may be labeled in every drawing. In the
drawings:

FIG. 1 is a diagram that depicts a simplified two dimen-
sional parameter space containing populations of three dif-
ferent sample types, A, B, and C, according to embodiments
of the present invention.

FIG. 2 is a diagram that depicts FIG. 1 following definition
of separation equations and cutting hyperplanes, according to
embodiments of the present invention.

FIG. 3 is an index to the region map of FIG. 2.

DESCRIPTION OF THE EMBODIMENTS

The invention will now be described more fully hereinafter
with reference to the accompanying drawings, which form a
part thereof, and which show, by way of illustration, specific
embodiments by which the invention may be practiced. The
invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi-
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ments set forth herein; rather, these embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the invention to those
skilled in the art. Among other things, the invention may be
embodied as methods or devices. Accordingly, the invention
may take the form of an entirely hardware embodiment in the
form of modules or circuits, and entirely software embodi-
ment in the form of software executed on a general purpose
microprocessor, an application specific microprocessor pro-
cessor, a general purpose digital signal processor or an appli-
cation specific digital signal processor, or an embodiment
combining software and hardware aspects. Thus, in the fol-
lowing description, the terms “circuit” and “module” will be
used interchangeably to indicate a processing element that
executes an operation on an input signal and provides an
output signal therefrom regardless of the hardware or soft-
ware form of its implementation. The following detailed
description is, therefore, not to be taken in a limiting sense.

Throughout the specification and claims, the following
terms take the meanings explicitly associated herein, unless
the context clearly dictates otherwise. The phrase “in one
embodiment” as used herein does not necessarily refer to the
same embodiment, though it may. As used herein, the term
“or” is an inclusive “or” operator, and is equivalent to the term
“and/or”, unless the context clearly dictates otherwise. There-
fore, “A, B or C” means any of the following: A; B; C; A and
B; A and C; B and C; A, B and C. An exception to this
definition will occur only when a combination of elements,
functions, steps or acts are in some way inherently mutually
exclusive. The term “based on” is not exclusive and allows for
being based on additional factors not described, unless the
context clearly dictates otherwise. In addition, throughout the
specification, the meaning of “a”, “an”, “and” and “the”
include plural references. The term “another” is defined as a
second or more. The meaning of “in” includes “in” and “on”.
Also, the use of “including”, “comprising”, “having”, “con-
taining”, “involving”, and variations thereof herein, is meant
to encompass the items listed thereafter and equivalents
thereof as well as additional items.

Reference throughout this document to “one embodi-
ment”, “certain embodiments”, “an embodiment” or similar
term means that a particular feature, structure, or character-
istic described in connection with the embodiment is included
in at least one embodiment of the present invention. Thus, the
appearances of such phrases in various places throughout this
specification are not necessarily all referring to the same
embodiment. Furthermore, the particular features, structures,
or characteristics may be combined in any suitable manner on
one or more embodiments without limitation.

Inaccordance with the practices of persons skilled in the art
of computer programming, the invention is described below
with reference to operations that can be performed by a com-
puter system or a like electronic system. Such operations are
sometimes referred to as being computer-executed. It will be
appreciated that operations that are symbolically represented
include the manipulation by a processor, such as a central
processing unit, of electrical signals representing data bits
and the maintenance of data bits at memory locations, such as
in system memory, as well as other processing of signals. The
memory locations where data bits are maintained are physical
locations that have particular electrical, magnetic, optical, or
organic properties corresponding to the data bits.

When implemented in software, the elements of the inven-
tion are essentially the code segments to perform the neces-
sary tasks. The code segments can be stored in a “processor
storage medium,” which includes any medium that can store
information. Examples of the processor storage medium
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include an electronic circuit, a semiconductor memory
device, a ROM, a flash memory or other nonvolatile memory,
afloppy diskette, a CD-ROM, an optical disk, a hard disk, etc.

Training

A set of original training documents (or portions thereof)
that represent the various kinds of text and images that will be
encountered by the copy system is selected by a user and
scanned. The scans are preferably made by the scanners to be
used in the production copy system, and at the resolutions to
be used in the copy system. If more than one resolution exists,
the whole tuning process may preferably be duplicated for
each resolution. These scans should be kept in an uncom-
pressed format, such as Tagged Image File Format (TIFF), as
opposed to a compressed file format, such as JPEG.

A user then classifies various somewhat coarse regions of
these documents as consisting of white space, text, and
image. This classification may be done by hand or with the aid
of tools.

One way to do this is to use the Layers feature of Adobe®
PhotoShop® (“Adobe” and “PhotoShop” are registered
trademarks of Adobe Systems Incorporated). First, one cre-
ates a second layer over the original scanned document. Then
one uses big filled rectangles to make that layer green for
example where the original is image, red where the original is
text, and blue where the original is white. Next, save that
second layer as a rough classification of the original docu-
ment. That rough classification will not be perfect. There will
be white space between text characters and between text lines
for example. The result is a set of inputs with the desired
classifications.

Embodiments of the present invention implement a com-
puter program, called helptag, to adjust the rough hand clas-
sification of the original training documents. This program
turns the rough hand classification described previously into
a high resolution map. It reads the original RGB image and
converts each pixel into a luminance, chrominance space like
YUV or YCC. Helptag then divides the images into rectan-
gular sets or “bricks” of pixels, and calculates a set of relevant
descriptive parameters for each brick. The brick is the basic
grouping of pixels that gets classified as text, image or white.
One needs to select a brick size to be used. Experimentation
has indicated that bricks o 32x1 pixels (i.e. 32 vertical pixels
by 1 horizontal pixel) in size work particularly well, although
other brick dimensions are within the scope of the invention.

Helptag looks for white bricks in text and white bricks in
images. A brick is defined as white if its minimum luminance
is above a threshold and its average luminance is above a
different threshold. The thresholds may be different for text
and images. If the helptag program finds a white space brick,
it ORs in the white space classification, e.g. blue color in the
classification image described above. A red text brick that
could also be white space, turns into a magenta (text or white
space) brick in the classification image. A green image brick
that also could be white space turns into a cyan (image or
white space) brick in the classification image.

Helptag may also look for dark bricks in areas hand tagged
as white space. One may use the same minimum luminance
and average luminance thresholds as was used in looking for
white space bricks in images. Helptag should get rid of the
white space classification for these bricks. Helptag should
also extend image and text classifications to the edge of the
current brick, even if that extends into white space. If part of
a brick was hand tagged as text, the whole brick should be
tagged as text. The same applies to image bricks.

Special handling is required for the edges of dark images.
The edges of dark images are very difficult to differentiate
from the edges of large text characters. It is better if these
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edges areinitially classified as text. Secondary processing can
reconvert them to images if it sees “white, text, image,
image, . . ., image, text, white” sequences. Helptag also looks
for dark edges tagged as image and removes the image clas-
sification.

There is a similar situation with the interiors of large text
characters. The interiors of large text characters are very
difficult to differentiate from dark image interiors. It is thus
better if these interiors are initially classified as image. Sec-
ondary processing can later convert them to images if it sees
“text, image, image, text” sequences. Helptag may look for
bricks entirely within a text character, and remove the text
classification.

Autotuning

A general objective of embodiments of the present inven-
tion is to successfully mimic the visual perception and judg-
ment of a human classifier, given the training documents and
corresponding classification results, as approximate as they
may be. To that end, the embodiments of the present invention
implement an autotuner program that further processes the
input training documents to establish parameter mappings to
be used later as part of an automated segmentation process.
The embodiments build a classified brick population map in
N-dimensional parameter space, and then use linear algebra
to generate a set of linear equations that separate the N-di-
mensional parameter space along the lines of classification
boundaries. Nis 12 in one embodiment, although other values
are within the scope of the invention. When a future document
image is scanned and divided into bricks, the parameter val-
ues of those bricks will be used to reach a particular region of
parameter space and return a classification value. If the
parameters are well chosen, regions with lots of text bricks
will not overlap much with regions with lots of image bricks,
etc.

FIG. 1 depicts a simplified two dimensional parameter
space containing populations of three different sample types,
A, B, and C. The parameter values for each sample brick
define a point in this parameter space. The regions marked A,
B, and C outline where the A, B, and C type sample bricks are
located in this parameter space. In this example there are only
two dimensions, indicating two parameters, and the popula-
tions are not overlapping. That is not typically the case for
populations of text, image, and white samples. However, the
diagram is still useful in understanding the tuning process.
FIG. 2 depicts the same sample space after four separation
equations have been defined. The equations govern the place-
ment of hyperplanes that define regions of parameter space.
The plus and minus notations denote the results of evaluations
of the separation equations within the various regions of
parameter space. These results are concatenated to produce
region IDs. FIG. 3 denotes the different region IDs and the
different image areas to which they correspond.

Before beginning the autotuning process, one needs the
parameter values for each brick in the input documents. If
evaluating the efficacy of different parameters or the best
number of parameters, a user might want to have a separate
program to calculate a parameter file for each input file. The
parameter values should all be integers in the same range. For
example, experimentation has determined that the parameter
value range of 0-255 works well. Thus, the bricks are typi-
cally contained in a 12-dimensional hypercube, with 0-255 on
each edge.

Further, experimentation has determined that it helps to
have a file listing the inputs to the autotuner. For each input
image, one needs the input image name, the name of the
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corresponding classification file from the helptag program,
the name of the corresponding brick parameter value file and
a weighting factor.

Once the set of original training document images is
selected and tagged with the desired (i.e. human) classifica-
tion, the embodiments of the invention operate automatically.
If the embodiments fail to properly classify a certain kind of
feature, an example of that feature may be added to the set of
original training document images along with its desired or
“correct” classification, and the training process may be
rerun. Thus the tuner’s job now is to merely select a good set
of original training documents. The prior art approach of
using thresholds to compare with brick parameter values,
followed by assembly of various AND & OR logic expres-
sions has been replaced. Each brick instead has an associated
set of N parameter values. These parameters locate the brick
as a point in N-dimensional parameter space.

A set of M equations for hyperplanes will cut through this
N-dimensional parameter space, chopping it into less than
2"M regions. Each region is bordered by a set of hyperplanes.
If the hyperplanes are selected well, each region has a pre-
ponderance of only one classification of bricks. A region can
be defined by whether it falls on the plus or minus side of each
of'the M equations. Those M plus or minus outcomes can be
encoded into an M bit address into a table of classifications.
Thus the embodiments implement a run time segmentation
algorithm that may be described as “For each brick, plug the
parameters for that brick into the M equations, generating a
plus or minus answer, concatenate the M sign bits into an M
bit address, use the M bit address to access a classification
table entry to read the likely classification for this brick.” The
tuner program generates the M equations and builds the 2"M
entry classification table.

Now the autotuner process is ready to start. The autotuner
reads the classification tag file and the brick parameter value
file and builds a table of brick sample data. The brick sample
data should include the desired classification(s), the param-
eter values for the brick, and the weight of the current image.
There should be a bit for each legal classification since more
than one classification can be allowed, for example white
space or text. There should also be a group ID field so that one
may later easily work with subgroups of the sample data.

White Separation

The next step is to generate a test for white space area
versus nonwhite area (e.g. text or image) samples. There are
parameters for the average luminance in a brick and the mini-
mum luminance in a brick. The white versus nonwhite test
depends on only these two parameters. From the brick sample
table, the embodiments build two histograms where the inde-
pendent axis is the average luminance value. One histogram is
for bricks classified as white and the other is for bricks clas-
sified as nonwhite. The histograms will probably overlap. The
embodiments find the point along the average luminance axis
where the number of nonwhite histogram entries above the
point and the number of white histogram entries below the
point are equal. This is the best classification by average
luminance, termed bavglum.

The embodiments then perform the same procedure for the
minimum luminance parameter, calculating the best classifi-
cation by minimum luminance, termed bminlum. Using these
two values, bavglum and bminlum, the embodiments calcu-
late an equation that separates white from nonwhite in brick
parameter  space, 0=k +w,, *bavglum+w,,*bminlum.
Weight bminlum twice the weight of bavglum; e.g. w,,=10
and w,,=20. Then k,=-w,,*bavglum-w,,*bminlum. One
now has an equation, 0=k,+w,, *Pavglum+w,*Pminlum,
that separates white from nonwhite bricks in parameter space.
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In this equation Pavglum and Pminlum represent the average
and minimum luminance values of any brick to be tested,
respectively. If the expression ky+w,, *Pavglum+
W, *Pminlum is positive, the brick is white; otherwise it is
nonwhite.

Text Separation

Now the embodiments make the first attempt at separating
text from image. The embodiments look through the brick
sample table at entries tagged text and entries tagged image.
Next, they calculate a center of gravity in N-dimensional
parameter space for text and for image. Instead of the usual
center of gravity based on averages, one based on median
values has been found to be superior. This can again be done
with histograms.

Next, the embodiments calculate the slope of a hyperplane
that splits these two populations. It will be perpendicular to
the N-dimensional vector between the two centers of gravity.
It will have the form 0=k, +v, *p,+v . ps+ . . . +V 3" Pas
where v, through v,,, are the N components of the vector
between the population centers. The v, | through v, ,, provide
a slope. A value for k, should be chosen such that the number
of misclassified text bricks matches the number of misclassi-
fied image bricks. This amounts to sliding the separation
plane along the vector between the two centers until the text
errors match the image errors. This can be done by calculating
k;,, for the text center of gravity and k,, for the image center of
gravity. Divide the range, —k1t to -kli, into a large enough
number of buckets, and calculate two histograms over the
buckets, one for text and one for image. Calculate the expres-
sion, v, *p,+v ,¥ps+ . . . 4V, 1Py, and increment the count in
the appropriate text or image bucket. There is probably some
overlap in the histograms. Find the entry where the text errors
match the image errors. That defines the k, value to use.

Improving Classification

If the white, text and image brick sample populations in
N-dimensional parameter space were well segregated and
separated along linear boundaries, the two equations would
be all that was required. However, neither of those conditions
is true. The populations intermingle and the best boundaries
are not linear. The embodiments of the present invention
attacks the latter problem by adding more hyperplanes that
further subdivide the N-dimensional parameter space. The
multiple hyperplanes provide a piecewise approximation to a
curved boundary. Because of the first problem, intermingling,
however, one can never achieve a perfect classification algo-
rithm.

The next problem is, “How does one select the best hyper-
planes to split the N-dimensional parameter space into the
most nearly segregated regions?” The autotuner program uses
a recursive algorithm to select hyperplanes. At each stage the
embodiments have E current hyperplane equations. These
split the N dimensional parameter space into at most 2°E
regions. The program builds a classification table for these
regions. There is an entry for each region. The entry should
have the number of sample bricks in this region that are text,
image and white, the most numerous tag, the number of text,
image and white bricks wrongly tagged, and the second most
numerous tag. The program loops over the sample bricks,
uses the E current hyperplane equations with the brick’s
parameter values to calculate E sign bits, combines those E
sign bits into an index into the per region classification table
and updates the text, image or white count for this entry. Then
for each region it picks the most numerous tag and the second
most numerous tag. The second most numerous tag is counted
as misclassification. Then the program looks through the
regional classification table and finds the regions with the
highest number of misclassifications. For each of these it uses
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the above described algorithm to calculate a hyperplane that
would split that region into more segregated populations. For
this calculation it uses only the samples in this region. This is
a candidate next hyperplane.

To evaluate this candidate it rebuilds the regional classifi-
cation table, but now with E+1 equations. Then it looks at the
total number of misclassifications over all regions. It looks at
this total because a new hyperplane will likely split many
regions, some in beneficial ways. The candidate with the least
total errors becomes the next hyperplane. This recursive pro-
cess continues until there are as many equations as there is
space and time available. There are also diminishing returns;
successive hyperplane equations correct fewer and fewer mis-
classifications.

This tuning process takes place offline. The results of the
process are a set of coefficients and offsets for E equations and
a table of 2°E two bit entries in a classification table. The
entries encode text, image, and white space. There may be a
set of equations and a classification table for each scan reso-
lution.

Experimentation has determined that 16 equations is a
good tradeoff between accuracy and time and space con-
straints. A digital signal processor was used that can do 16
8-bit multiply accumulates per clock cycle. The calculation
and accumulation of the brick parameters typically takes
more time than the equation evaluation and table lookup.

Two basic brick parameters were added for each brick. The
first is a measure of the amount of light to dark to light
transition in a running vertical average ofthe luminance of the
pixels. For each column of pixels across the page, a running
average of the luminance is calculated as the sum of seven
times the previous running average for this column plus the
luminance of this pixel, all divided by eight. Within each
brick, going across the pixels from left to right, the embodi-
ments track the following values, the lightest running aver-
age, the biggest drop in luminance from that lightest running
average, the level of running average luminance at that big-
gest drop called darkest, the biggest rise in running average
luminance from that darkest, and the max product of biggest
drop and biggest rise. Within each brick, that max product,
divided by 128 and limited to 255 is the first new parameter,
light to dark to light.

Note that the true average of pixels from a few lines above
to a few lines below a given pixel would give a better average
than this running average. However, it would be much more
computationally expensive, and experimentation has deter-
mined that this present method is adequate. Since one is
working with just a current running average and a new pixel
at the bottom of the averaging window, the running average
calculated applies to a pixel five lines previous to the new
pixel being added. Thus the light to dark to light parameter
applies to a brick five lines previous to the new pixels.

The second new parameter is a measure of the sum of the
absolute value of the difference between the luminance of a
pixel and the luminance run through a 2D low pass filter. To
save computation time, the 2D low pass filter is approximated
by a running horizontal average of the running vertical aver-
ages for each column of pixels. The new 2D average is com-
puted as the sum of seven times the current 2D average plus
the new vertical average, all divided by 8. This 2D average
applies to a pixel five columns previous to the new column.
The embodiments calculate the difference between this 2D
average luminance and the luminance of the pixel it applies
to, getting the absolute value of that difference. Then those
absolute values are summed across the brick and the sum is
divided by eight. That is the second new parameter.
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Embodiments of the present invention enable much easier
calibration and yield much more accurate segmentation clas-
sification results than has been possible with the prior art. The
embodiments also render the tuning of a segmentation system
for a given scanner model or a different type of original
document a more practical task. The embodiments provide
higher quality copies, which may sometimes be printed at
higher speeds. The embodiments may also be applied to
Mixed Raster Content (MRC) documents, which are highly
compressible document scans typically containing both
binary text and continuous-tone images.

The automatic tuner portion of the embodiments has much
broader application than just text, image, white segmentation.
It would be useful anytime one had parametric data describ-
ing objects or items to be classified by a computer, and a
training set of previously classified items.

A document copy pipeline may be summarized as follows:

Scan original documents

Perform white point compensation or background removal

Convert from RGB to YCC representation

Perform primary segmentation to generate segmentation

plane

Perform secondary segmentation to adjust segmentation

plane

Limited sharp Y to generate text plane

FIR filter Y

Color convert YCC to CMYK representation

Scale all planes, CMYK +text+segmentation

Screen text plane with 1-bit error diffusion

Screen CMYK with 2-bit clustered dot error diffusion

Merge CMYK planes with text plane according to segmen-

tation plane

Print CMYK output

The segmentation tuning process may be summarized as
follows:

Select input samples that represent the range of text and

images to be processed

Scan those samples on the target scanner

Hand tag those samples via PhotoShop® layers creating a

parallel image that for example is red where the sample
is text, green where the sample is image, and blue where
the sample is white space

Refine the hand tags using a helper program

Calculate the parameters for the bricks in the samples

Use the autotuner program to generate a classification map

that maps parameter values to classification codes

Build the classification map into the runtime code for pro-

duction runs

Adjust the tuning process if necessary by adding input

samples and rerunning the relatively automated training
process

Each region of parameter space may be classified with the
following data entries:

Number of samples not tagged text

Number of samples not tagged image

Number of samples not tagged white

Least erroneous tag

Number of text bricks wrongly in this region

Number of image bricks wrongly in this region

Number of white bricks wrongly in this region

Dominant wrong tag in this region

Total wrong tags in this region

The autotuner algorithm may be summarized as follows:

Generate equations to separate white space from text or

image

Generate equations to separate text from image
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10
Loop through the following process until there are suffi-
cient equations:
Fill out the region classification table
Find the N worst regions by total wrong tags
Generate separation equations for each of these regions
using only the populations in that region
Evaluate each one by filling out the new larger region
classification table and count total errors over all
samples
Pick the one with the fewest total errors
Add that separation equation to the set
The process for generating separation equations may be

summarized as:

Find the centers of gravity of the two populations. Instead
of the usual center of gravity based on averages, use one
based on median values.

The hyperplane slope will be perpendicular to the vector
between the centers of gravity. Thus w0 ... wll=v0...
vll.

Calculate a kA such that the hyperplane passes through the
population A center of gravity. kA=—(wO*pOA+
wl*plA+ ... +wll¥pllA)

Similarly calculate a kB such that the hyperplane passes
through the population B center of gravity

Divide the range kA to kB into a large enough number of
buckets and calculate two histograms over the buckets,
one for population A and one for population B.

Evaluate —(wO*pO+w1*pl+... +wl1*pl1) for each of the
two populations and increment the appropriate histo-
gram bucket.

There will probably be some overlap between the histo-
grams.

Working in from both ends of the histograms, find the entry
where the accumulated population A errors most closely
match the accumulated population B errors.

That entry defines the K value for the equation.

The segmentation parameters may include:

Sri Smoothness

Maximum Color

Average Luminance

Minimum Luminance

Maximum Luminance

Averaged Sri Smoothness

Neighborhood Minimum [uminance

Vertically Averaged Maximum Color

General (Average) Color

Vertically Averaged General Color

Darkest in Lightest

High Pass-Low Pass Luminance Filter

The Sri Smoothness parameter may be defined as: (sum

(abs(pixel luminance gradient)))"2/sum((pixel luminance
gradient)"2), where the pixel luminance gradient is the pixel-
to-pixel delta luminance. This parameter will be low in text,
but high in photos and halftones.

The Maximum Color parameter may be defined as:

Distance from neutral in YCaCb space

Reduced by previous line to next line luminance change—
compensates for color fringe on text

Max(0, abs(sum(4 pixel Ca color)-4*128)+abs(sum(4
pixel Cb color)-4*128)-abs(sum(4 prev line Y)-sum(4
next line Y))/4)

Calculated for 4 pixels at a time (this is fast on DSP)

Pick max of 8 groups of 4
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The Averaged Sri Smoothness parameter may be defined

as:

Vertically and then horizontally averaged

New vertical running average=(old vertical running aver-
age™7+new value)/8

Horizontal average is (left vert avg+2*this vert avg+right
vert avg)/4

The Neighborhood Minimum Luminance parameter may

be defined as:

Find minimum luminance in the neighborhood of this 32x1
pixel brick

Look 5 lines back, 2 lines back, this line, 2 lines ahead, 5
lines ahead

On each line consider this brick, previous brick, and next
brick horizontally

The Vertically Averaged Maximum Color parameter may

be defined as:

Calculated from Maximum Color parameter

Use parameters from this brick and bricks above and below

Max color above+2*this max color+max color below)/4

The General (Average) Color parameter may be defined as:

Max(0, abs(sum(4 pixel Ca color)-4*128)+abs(sum(4
pixel Cb color)-4*128)—abs(sum(4 prev line Y)-sum(4
next line Y))/4)

Start with same calculation as Max Color

Average over 8 groups of 4 pixels

The Vertically Averaged General Color parameter may be

defined as:

Start with General (Average) Color

Calculate a running vertical average

Next value=(previous value*7+new value)/8

The Darkest in Lightest parameter may be defined as:

Keep a running vertical average of luminance for each
pixel position across page

Vavglum=(previous vavglum*7+new luminance)/8

Processing pixels from left to right in a brick, looking at
vavglum values, track lightest pixel, darkest pixel, max
light to dark delta (Iddelta), max dark to light delta
(dldelta), max product of 1ddelta and dldelta

Darkest in Lightest=min(max product/128, 255)

The High Pass-Low Pass Luminance Filter parameter may

be defined as:

Sum (abs (high -2D low pass filter))

Calculate a running horizontal average of the running ver-
tical average luminance. This provides the 2D low pass
filter.

Use the pixel luminance itself for the high pass filter.

This integrates the sharp edges in the text.

What is claimed is:
1. A method for processing an image region of an image
having a plurality of pixels, comprising:

dividing the image region into a plurality of bricks of
pixels;

calculating parameters of each of the plurality of bricks;

applying in a computer system the calculated parameters of
each brick to a plurality of brick parameter separation
equations to obtain a result for each of the plurality of
brick parameter separation equations;

computing an index for each brick by concatenating the
brick parameter separation equation results for that
brick;

performing a classification map lookup using the index;
and

classifying the brick as representing white space, black
text, or image content according to the result of the
classification map lookup; whereby
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the image region is segmented into sub-regions of white
space, black text, and image content according to the
classification of said bricks.

2. The method of claim 1, wherein the classification map is
created by prior processing of at least one training image.

3. The method of claim 1, wherein the classification map
relates the parameters to classified content type.

4. The method of claim 1, wherein the brick parameter
separation equations define hyperplanes cutting a parameter
space into parameter regions having different combinations
of parameter values.

5. The method of claim 1, wherein hyperplanes defined by
the brick parameter separation equations cut a parameter
space into parameter regions approximating an optimal map-
ping between parameter value combinations and correspond-
ing image region classifications.

6. A system for processing an image region of an image
having a plurality of pixels, comprising:

a processor that:

divides the image region into a plurality of bricks of pixels;

calculates parameters of the plurality of bricks;

applies the calculated parameters of each brick to a plural-

ity of brick parameter separation equations to obtain a
result for each of the plurality of brick parameter sepa-
ration equations;

computes an index for each brick by concatenating the

brick parameter separation equation evaluation results
for that brick];

performs a classification map lookup using the index; and

classifies the brick as representing white space, black text,

or image content according to the result of the classifi-
cation map lookup; whereby

the image region is segmented into sub-regions of white

space, black text, and image content according to the
classification of said bricks.

7. The system of claim 6, wherein the classification map is
created by prior processing of at least one training image.

8. The system of claim 6, wherein the classification map
relates the parameters to classified content type.

9. The system of claim 6, wherein the brick parameter
separation equations define hyperplanes cutting a parameter
space into parameter regions having different combinations
of parameter values.

10. The system of claim 6, wherein hyperplanes defined by
the brick parameter separation equations cut a parameter
space into parameter regions approximating an optimal map-
ping between parameter value combinations and correspond-
ing image region classifications.

11. A non-transitory machine-readable medium embody-
ing a computer program product for processing an image
region of an image having a plurality of pixels, the non-
transitory machine-readable medium comprising non-transi-
tory program instructions that, when executed by a computer,
cause the computer to:

divide the image region into a plurality of bricks of pixels;

calculate parameters of the plurality of bricks;

apply the calculated parameters of each brick to a plurality

of brick parameter separation equations to obtain a result
for each of the plurality of brick parameter separation
equations;

compute an index for each brick by concatenating the brick

parameter separation equation evaluation results for that
brick;

perform a classification map lookup using the index; and

classify the brick as representing white space, black text, or

image content according to the result of the classifica-
tion map lookup; whereby
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the image region is segmented into sub-regions of white
space, black text, and image content according to the
classification of said bricks.

12. The non-transitory machine-readable medium of claim
11, wherein the classification map is created by prior process-
ing of at least one training image.

13. The non-transitory machine-readable medium of claim
11, wherein the classification map relates the parameters to
classified content type.

14. The non-transitory machine-readable medium of claim
11, wherein the brick parameter separation equations define
hyperplanes cutting a parameter space into parameter regions
having different combinations of parameter values.

15. The non-transitory machine-readable medium of claim
11, wherein hyperplanes defined by the brick parameter sepa-
ration equations cut a parameter space into parameter regions
approximating an optimal mapping between parameter value
combinations and corresponding image region classifica-
tions.

16. The non-transitory machine-readable medium of claim
11, wherein the processing is performed for at least one of:
document copying, document printing, and document com-
pression.
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17. A system for processing at least one image region of an
image having a plurality of pixels, comprising means for:

dividing the image region into a plurality of bricks of
pixels;

calculating parameters of each of the plurality of bricks;

applying in a computer system the calculated parameters of
each brick to a plurality of brick parameter separation
equations to obtain a result for each of the plurality of
brick parameter separation equations;

computing an index for each brick by concatenating the
brick parameter separation equation results for that
brick;

performing a classification map lookup using the index;
and

classifying the brick as representing white space, black
text, or image content according to the result of the
classification map lookup; whereby

the image region is segmented into sub-regions of white
space, black text, and image content according to the
classification of said bricks.
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